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The ability of viruses to mutate and evade the human immune sys-
tem and neutralizing antibodies remains an obstacle to antiviral
and vaccine development. Many neutralizing antibodies, including
some approved for emergency use authorization (EUA), reduced or
lost activity against severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) variants. Here, we introduce a geometric deep
learning algorithm that efficiently enhances antibody affinity to
achieve broader and more potent neutralizing activity against such
variants. We demonstrate the utility of our approach on a human
antibody P36-5D2, which is effective against SARS-CoV-2 Alpha,
Beta, and Gamma but not Delta. We show that our geometric neu-
ral network model optimizes this antibody’s complementarity-
determining region (CDR) sequences to improve its binding affinity
against multiple SARS-CoV-2 variants. Through iterative optimiza-
tion of the CDR regions and experimental measurements, we
enable expanded antibody breadth and improved potency by ∼10-
to 600-fold against SARS-CoV-2 variants, including Delta. We have
also demonstrated that our approach can identify CDR changes
that alleviate the impact of two Omicron mutations on the epitope.
These results highlight the power of our deep learning approach in
antibody optimization and its potential application to engineering
other protein molecules. Our optimized antibodies can potentially
be developed into antibody drug candidates for current and
emerging SARS-CoV-2 variants.

computational biology j deep learning j geometric neural networks j
SARS-CoV-2 variants j broadly neutralizing antibodies

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) has spread worldwide over the past 2 y, causing

hundreds of millions of confirmed infections and millions of
deaths (1). The receptor-binding domain (RBD) of the SARS-
CoV-2 virus spike protein initiates binding to the host receptor,
angiotensin converting enzyme 2 (ACE2) (2–6), and serves as
an initial essential step in viral–cell membrane fusion, as well as
a potential target for neutralizing antibodies (7–10). Neutraliz-
ing antibodies that target RBD have already shown therapeutic
and clinical value (11–17).

However, reduced sensitivity of SARS-CoV-2 variants to
antibody and serum neutralization has been widely observed
(18–21). For example, the B.1.617 lineage, also known as the
Delta variant, contains two mutations (L452R and T478K) in
the RBD that facilitate viral escape—the ability of viruses to
evade the immune system and cause disease (22). The L452R
mutation is located at the periphery of the receptor binding
motif (RBM) and is found to reduce neutralizing activity by
antibodies. The T478K mutation in the RBD, located within
the epitope region in the RBM, is also associated with antibody
escape. There has been striking evidence of antibodies that
have been greatly affected, or even have lost their neutralizing
activity altogether, by viral escape (23–26).

Experimental methods to improve antibody binding and neu-
tralization have been developed. In vitro affinity maturation
methods, such as random mutagenesis with display technolo-
gies, has been shown to improve antibody binding against target
proteins, but such approaches are time consuming and labor
intensive (27–32). Targeted optimization toward one particular
variant may also result in loss of neutralizing activity against
other variants. Efficient optimization of antibodies that confer
broad and potent neutralizing activity against diverse variants is
therefore urgently needed.

Here, we develop and apply a deep learning framework to
efficiently optimize antibodies to achieve broader and more
potent neutralizing activity against SARS-CoV-2 variants.
Based on a large collection of antibody–antigen complex struc-
tures and binding affinity data, we trained a geometric neural
network model, recently developed in computer vision, that
effectively extracts interresidue interaction features and makes
predictions of changes in binding affinity due to single or multi-
ple amino acid substitutions to the antigen. To search for favor-
able complementarity-determining region (CDR) mutations
that potentially improve antibody binding, we also simulate an
in silico ensemble of predicted complex structures with CDR
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mutations to obtain a robust estimation of the free energy
change, also known as ΔΔG. Compared to traditional appro-
aches, the deep learning search space is theoretically much
larger and is also easily applicable in targeting multiple variants
simultaneously via multiobjective optimization.

To demonstrate the utility of our approach, we sought to
optimize a human neutralizing antibody P36-5D2, which was
initially isolated from a convalescent patient, and demonstrated
reasonably strong potency and breadth against Alpha, Beta,
and Gamma (33) but not Delta, due to Delta’s L452R but not
T478K mutation through computational structure analysis. We
applied our deep learning model to predict CDR sequences
that potentially improved binding affinity against the Delta vari-
ant while maintaining activity against Alpha, Beta, and Gamma.
Through an iterative process of modeling and experimental val-
idation, we were able to obtain six optimized antibodies with
substantially improved potency of about 10- to 600-fold against
multiple variants, including Delta. We also provide initial prom-
ising studies on Omicron. These results highlight the power of
deep learning approaches for antibody optimization and their
potential application to a wide range of other protein mole-
cules. The optimized antibodies presented here also have the
potential to be further developed as antibody drug candidates
against SARS-CoV-2 variants.

Results
Neural Network Architecture. We tapped neural networks because
they are known as universal approximators for learning com-
plex nonlinear mappings from high-dimensional data with
generalizability. Among many successful neural network archi-
tectures, attention-based networks are extremely powerful for
modeling complicated interactions between entities, making
them suitable for modeling proteins whose functions are largely
determined by interactions between amino acids (34–37).

We developed an attention-based geometric neural network
architecture to learn the mutational effect on protein–protein
interactions from three-dimensional protein complex structures
(Fig. 1). The geometric part of the model learns a vector embed-
ding for each residue by considering the proximity of its surround-
ing atoms. Based on these learned geometric embeddings, the
attention network learns to identify key residue pairs near the pro-
tein interface contributing to binding affinity. Specifically, for each
residue in a protein complex, the network first identifies the
importance of other residues via the attention mechanism and
aggregates information including spatial proximity and physico-
chemical properties from them. The aggregated information thus
can encode the environment as well as interaction features for
each residue. To estimate the effect of mutation(s), we first predict
the structure of mutated protein complexes by repacking side-
chains around mutation sites and encode both wild-type (WT) and
mutated complexes using the network to obtain both WT and
mutant embeddings. Then, additional neural network layers
compare the two embeddings to predict the effect of mutation
measured by ΔΔG. This model was evaluated by split-by-complex
fivefold cross-validation over the Structural Kinetic and Energetic
database of Mutant Protein Interactions (SKEMPI) V2.0 dataset
(38). A subset consisting of 1,131 single-point mutations (S1131)
(39) was used to benchmark the model and other baselines. The
Pearson correlations between the predicted ΔΔG values by differ-
ent methods and real ΔΔG are reported in SI Appendix, Table S1.
An additional subset consisting of multipoint mutations (M1707)
(40) was also used as a benchmark. We found that our model is
able to make predictions with moderate to high correlation with
experimental binding data and also outperforms GeoPPI (41), the
current state-of-the-art method, as well as a few other recently
proposed methods for predicting single-mutation effects. To fur-
ther evaluate mutated antibody–antigen complexes, we additionally

used two other methods, Rosetta and GeoPPI, that also predict
mutational effects on stability and binding (41–43), in order to
build an ensemble method to evaluate single and higher-order
mutations. Our ensemble method is thus able to identify modified
antibody sequences that potentially improve antigen binding.

Antibody of Choice. We sought to experiment with an antibody
that has an epitope with highly conserved regions, which makes
it a good candidate to become potent against multiple SARS-
CoV-2 variants. We focused on a broad neutralizing antibody
P36-5D2, isolated from convalescent patients, known to neu-
tralize Alpha, Beta, and Gamma (33). However, P36-5D2 activ-
ity against Delta is reduced by ∼40-fold, relative to that of WT
SARS-CoV-2 (Fig. 1D). Structural information on the epitope
of P36-5D2 indicated that such a reduction was likely attributed
to L452R and T478K mutations found in the RBD of Delta.
The longer sidechain of the L452R mutation might have
exerted steric interference for antibody recognition.

Generalization to Delta Variant. To improve the neutralizing
activity of P36-5D2 against the Delta variant, we applied our
deep learning method to predict and identify optimized anti-
body mutations. While the initial structure of P36-5D2 bound
with the RBD, the neutralizing activity of P36-5D2 against
SARS-CoV-2 WT, Beta, Gamma, and Delta was then utilized
to analyze and select CDR mutations. Based on those data, our
method generated an in silico mutation library of antibody
CDRs, ranked by trained geometric neutral networks in such a
way that they should not only improve antibody binding to the
Delta RBD but also maintain binding to the RBD of other var-
iants of concern (VOC). The predicted top-ranked mutations
were selected for experimental verification via pseudotyped
virus neutralization assays (Methods). A total of four rounds of
optimization for P36-5D2 were performed to select the opti-
mized antibodies with best neutralizing potency and breadth.
During experimental evaluation, we also included REGN-
10987 (44), an ultrapotent antibody approved for emergency
use authorization, as the positive control.
First-round computational results. We first sought to narrow
down which optimized antibodies to experimentally test, the
number determined by our experimental capacity. According to
the model’s predictions, 12 top-ranked single mutations were
selected and introduced into the original antibody P36-5D2.
These mutations included T30P, T31W, and Y32P in HCDR1;
N52D, A53F, N55L, and N57L in HCDR2; G100P, R103M,
L104F, and Q105F in HCDR3; and S30Y in LCDR1. Out of
the 12 single-mutation sites, only 4 (T30, T31, R103, and Q105)
were positioned on the paratope of P36-5D2 bound to the
RBD, while the remaining 8 were outside and did not directly
interact with the RBD. To evaluate the neutralizing breadth
and potency of the optimized antibodies, we used an estab-
lished panel of 10 pseudotyped viruses, including SARS-CoV-2
WT 614G, four VOCs—Alpha, Beta, Gamma, Delta—as well
as Delta Plus, two VOIs—Kappa, Epsilon which carried
L452R, and Eta which carried E484K—and the variant N439K
which effected reference antibody REGN10987.
First-round experimental results. In the first-round neutraliza-
tion shown in Fig. 2, the original antibody P36-5D2 neutralizes
SARS-CoV-2 WT, Alpha, Beta, and Gamma, but is affected by
Delta and other viruses carrying L452R, consistent with our
structural analysis and predictions. R103M in HCDR3, which
was the most surprising mutation, significantly improved neutral-
izing activity of P36-5D2 against all 10 pseudotyped viruses with
average half-maximal inhibitory concentration (IC50) reaching
0.038 μg/mL. Four mutations, T31W in HCDR1, A53F, and
N57L in HCDR2, and L104F in HCDR3, also improved the
overall neutralizing activity, with average IC50 of 0.479 μg/mL,
0.547 μg/mL, 0.025 μg/mL, and 0.104 μg/mL, respectively. Three
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mutations, N52D, N55L in HCDR2, and G100P in HCDR3,
obtained enhanced neutralization against Delta but reduced neu-
tralization against WT. The four mutations T30P, Y32P in
HCDR1, Q105F in HCDR3, and S30Y in LCDR1 had negligible
impact on the neutralizing activity of P36-5D2.

Second round: From single to double mutations improves potency.
Based on the first-round results, we combined single mutations
to create double mutants and selected them also according to
ΔΔG predictions. As R103M was the best single mutation in
the first round, the double mutations were designed to pair

A

B

C

D E

Fig. 1. Deep learning guided antibody optimization platform. (A) Overview of the pipeline. It demonstrates the computational/experimental feedback
loop to refine antibody design. (B) Geometric deep learning model. The WT complex and the mutated complex structures are encoded using a shared
geometric attention network. The effect of mutation measured by ΔΔG is then predicted by a network that compares features of the two complexes.
(C) P36-5D2 antibody optimization. Given the complex structure, we first simulate different variants and then evaluate potential CDR mutations that will
improve binding by predicted ΔΔG values. Mutants with top ΔΔG scores are examined in laboratory experiments, and those with neutralizing potency
are combined for the next round of optimization. (D) Optimization improves neutralization ability against SARS-CoV-2 and Delta variant. (E) The log fold
changes of IC50 relative to the original antibody.
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R103M with another mutation, including L104F, T30P, T31W,
A53F, N55L, or N57L in HCDRs. Each of those six double
mutations achieved over an order of magnitude improvement
in neutralizing activity over the best single mutation R103M in
the first round, especially for HX001-013 (R103M and L104F)
and HX001-015 (R103M and T31W), for which average IC50

values increased to 0.007μg/mL and 0.013μg/mL, respectively
(Fig. 2). HX001-013 has an IC50 similar to the reference anti-
body REGN10987 and is more potent than REGN10987 in
neutralizing the N439K variant.
Third-round optimization identifies potent triple mutations.
Following a similar strategy, single mutations proven to improve
potency and breadth in the first and second rounds of optimiza-
tion were combined to create 15 antibodies with triple mutations.

They included R103M and an additional two selected from the
following six residues: T30P, T31W, A53F, A55L, N57L, and
L104F. As expected, optimized antibodies with three mutations
demonstrated improved potent neutralizing activity against
the pseudotyped viruses, especially HX001-020 (R103M, T31W,
and L104F), HX001-024 (R103M, N57L, and L104F), and
HX001-033 (R103M, T31W, and N57L) with average IC50 of
0.006 μg/mL, 0.006μg/mL, and 0.010μg/mL, respectively (Fig. 2).
HX001-020 and HX001-024 displayed IC50 values similar to the
reference antibody REGN10987 in general and were better than
REGN10987 in neutralizing the N439K mutant.
Fourth round investigates quadruple mutants. Since optimized
antibodies with triple mutations such as T31W/N57L/R103M,
R103M/T31W/N57L, and R103M/N57L/L104F all demonstrated

A

B C

Fig. 2. Evaluation of the neutralization level of optimized antibodies. (A) IC50 values of optimized antibodies against pseudotyped SARS-CoV-2 variants.
Mutations of each optimized antibody and mutations of each variant on RBD are indicated. Results were calculated from three independent experiments.
(B) The log fold changes of IC50 relative to the original antibody against SARS-CoV-2 and Delta variants are calculated. (C) Neutralization curves of
optimized against pseudotyped SARS-CoV-2 carrying Omicron mutations N440K or G446S.
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strong neutralizing activity in round three, we constructed
HX001-034, a quadruple mutant, to include all four single muta-
tions. HX001-034 had potent neutralizing activity, with an IC50 of
0.017μg/mL, yet was slightly weaker than three mutation combi-
nations: HX001-020, HX001-024, and HX001-033 (Fig. 2).

Optimized Antibodies Neutralizing Delta. To experimentally test
our predicted mutations, we compared the binding affinity of
the original antibody and optimized ones against the SARS-
CoV-2 WT RBD monomer and Delta RBD monomer by
surface plasmon resonance (SPR) (Table 1). The dissociation
constant (KD) of the optimized antibodies to the SARS-CoV-2
WT RBD was 1.2 nM to 0.42 nM, which is 20- to 50-fold stron-
ger than the original P36-5D2 antibody. While the off-rate (kd)
value of the original antibody against WT RBD was around
10�2, the off-rate (kd) values of the six optimized antibodies all
reached 10�3, signifying a longer half-life binding period and
higher binding stability. Antibodies HX001-020, HX001-024,
HX001-033, and HX001-034 with three or four mutations were
also stronger than HX001-013 with only two mutations. The
increase in binding affinity may contribute to the increased neu-
tralizing activity of these antibodies against SARS-CoV-2 WT
and variants. Notably, the dissociation constant of optimized
antibodies with the SARS-CoV-2 Delta RBD was 6.22 nM to
26.4 nM, which is twofold stronger than or similar to P36-5D2,
while the KD of optimized antibodies with the SARS-CoV-2
Delta RBD is still slightly weaker than with WT RBD.

Structural Investigations of Antibody Neutralization. To help explain
why our predicted mutations could improve the neutralizing
activity from a structural perspective, we used Rosetta to pre-
dict the complex structures of WT/Delta RBD with antibodies
carrying four critical single mutations: T31W, N57L, R103M, or
L104F. As shown in Fig. 3A, T31 on the original antibody
HCDR1 might cause steric clash with the sidechain of R452 on
the Delta RBD because the minimal distance between the
heavy atoms on two sidechains is within 4 Å. After substituting
T31 with W31, which does not have a large sidechain, we no
longer see the steric clash with R452 on the Delta RBD. As
shown in Fig. 3B, N57 on HCDR2 is not on the Delta RBD
interaction interface and has no direct contact with Y449 or
R452. After substituting N57 with L57, we observed a new
interaction between L57’s sidechain and Y449, which poten-
tially explains the enhanced binding affinity of this mutation.
As shown in Fig. 3C, R103 on the original antibody HCDR3 is
spatially very close to the Delta RBD, which may also induce a
steric clash with R346. Since both R103 and R346 have very
long sidechains and carry positive charges, proximity between
the two may introduce strong repulsion which may greatly
reduce the binding affinity between the antibody and the anti-
gen. After substituting M103, which has a much smaller side-
chain, we no longer observe a direct interaction with R346 on
the Delta RBD. This factor might explain the greatly improved
neutralization against the Delta variant. Similarly, we can also
see that the substitution of L104 for F104 on the HCDR3 might

also remove a potential steric clash with R452 on the Delta
RBD and thus improve binding and neutralization (Fig. 3D).

Generalization to Omicron Mutations. A new SARS-CoV-2 variant
Omicron emerged in South Africa at the end of November 2021.
Omicron carries 36 total mutations in the spike protein and 15
mutations in the RBD, which greatly changed the immunogenic-
ity of the RBD and caused many neutralizing antibodies to lose
their neutralization (45–47). Through structure analysis, we
found that the G446S mutation was located on the epitope of
antibody P36-5D2, and N440K was near (within 5 Å) the epitope.
Thus, we applied our deep learning approach to further optimize
the antibody sequence HX001-020. The best mutations identi-
fied include N92F (HX001-035), G93M (HX001-036), Y94G
(HX001-037), and Y74D (HX001-038) in LCDR3. We also con-
structed a double mutant, HX001-039 (N92F/Y94G), and a triple
mutant (N92F/G93M/Y94G). HX001-041 was not produced. It
can be seen from Fig. 2C that the optimized antibodies were one-
fold to threefold higher than HX-020 in neutralizing against
N440K, and 20- to 100-fold stronger in the pseudotyped virus
carrying the G446S mutation. These results demonstrate that
adaptive deep learning optimization holds promise for designing
potent antibodies against Omicron and future emerging variants.

Summary. Collectively, the deep learning platform presented here
efficiently optimized the original antibody to obtain broader and
more potent neutralizing activity against SARS-CoV-2 variants in
only 2 wk for each single-round optimization. Optimized antibod-
ies with single mutations or their combinations can achieve 10- to
600-fold improvement in neutralizing activity against SARS-CoV-
2 variants, including Delta. In all optimized antibodies, six
antibodies (HX001-013, HX001-015, HX001-020, HX001-024,
HX001-033, and HX001-034) had the most potent and broad
neutralizing activity, with an IC50 between 0.006 μg/mL and 0.017
μg/mL, indicating the capability of our deep learning method to
predict mutations with improved neutralizing ability of antibodies
against WTor other variants.

Discussion
In this study, we have reported the efficient optimization of a
single original antibody P36-5D2 to obtain broader and more
potent neutralizing ability against multiple SARS-CoV-2 var-
iants via a cutting-edge, deep learning guided approach. Based
on the crystal structure of the interaction of the RBD and anti-
bodies, and neutralizing data, our geometric neural network
model created libraries of CDR mutations and ranked each
mutation according to its contribution to binding affinity and
structural stability. Through an iterative optimization proce-
dure, we found that optimized antibodies exhibited broader
and much more potent neutralizing activity compared to the
original antibody. More detailed neutralization assays and bind-
ing affinity analyses by SPR further proved that optimized anti-
bodies had hundredfold improvements against specific viral
strains.

Table 1. Binding kinetics of original Ab and optimized antibodies with SARS-CoV-2 RBD measured by SPR

mAb name

WT RBD Delta RBD

ka (1/Ms) kd (1/s) KD (nM) ka (1/Ms) kd (1/s) KD (nM)

Original antibody 1.37 × 106 3.14 × 10�2 22.9 2.58 × 106 2.94 × 10�2 11.4
HX001-013 1.49 × 106 1.79 × 10�3 1.20 2.42 × 106 1.89 × 10�2 7.81
HX001-015 3.94 × 106 2.53 × 10�3 0.64 1.50 × 106 3.97 × 10�2 26.4
HX001-020 4.50 × 106 2.51 × 10�3 0.56 2.73 × 106 2.03 × 10�2 7.44
HX001-024 2.77 × 106 2.28 × 10�3 0.82 2.16 × 106 1.34 × 10�2 6.22
HX001-033 3.10 × 106 1.29 × 10�3 0.42 2.83 × 106 4.37 × 10�2 15.5
HX001-034 5.10 × 106 3.07 × 10�3 0.60 2.64 × 106 1.36 × 10�2 5.16
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By deep learning and computational modeling of optimized
antibodies of SARS-CoV-2 RBD variants, we observed that
predicted optimized antibody candidates could successfully
abrogate preexisting steric clashes with RBD at the interface.
Some other mutations significantly increase the number of
interaction sites, expanding antibody epitopes to more regions
on the surface of RBD. Interestingly, a few good mutations
were located away from the antibody–RBD interface, which we
speculate improve antibody stability and increase CDRs confor-
mational exposure to enhance the neutralization. These results
strongly suggested that our model can successfully predict
potential modifications of antibodies that are critical to bind to
an antigen, with increased structural stability and outstanding
neutralizing activity. Surprisingly, peripheral sites not on the
binding interface have also been picked up by our deep learn-
ing model which seem to be a challenge for conventional struc-
tural analysis. Our deep learning model exhibits superior
advantages in antibody prediction and optimization for more
broader and potent neutralization.

As the virus continues to evolve, more and more diverse var-
iants will emerge in the infected population with greater
immune pressure. Many such variants, including Delta and the

most recent Omicron, have adopted different mutation strate-
gies to evade immune recognition, leading to the failure of neu-
tralizing antibodies and vaccines (18, 23, 45–48). Undoubtedly,
it is urgent to develop and optimize antibodies to overcome
emerging or future variants with broad neutralization activities.
The conventional in vitro affinity maturation usually takes a
long time with poor efficiency due to its small library content,
incompatible optimization for multiple goals, and other techni-
cal obstacles (32, 49). Directed maturation toward a new vari-
ant may also cause the antibody to lose neutralization against
previous variants. One important aspect of our approach is that
our integrated approach is able to simultaneously optimize bind-
ing or neutralization against multiple RBD variants. Based on a
deep learning method, we are able to select promising CDR
mutation candidates and effectively combine them to achieve effi-
cient antibody optimization. The time spent for each round of
the optimization is about 2 wk, most of which is for experimental
mutant construction and neutralization assays, much faster than
conventional affinity maturation procedures.

Based on our platform, it would even be feasible to train a
pool of antibodies that target different potential variants. It is
also critical to develop a system to predict virus variants with

A

B

C

D

Fig. 3. Predicted structure of important mutations on optimized antibodies. (A) Predicted structure of interactions between original antibody carrying
T31 (red) or optimized antibody carrying W31 (red) with related residue R452/L452 (blue) on Delta/WT RBD (cyan); heavy chain is labeled in purple, and
light chain is labeled in pink. (B) Predicted structure of interactions between original antibody carrying N57 (red) or optimized antibody carrying
L57 (red) with Y449 (blue) and R452/L452 (blue) on Delta/WT RBD. (C) Predicted structure of interactions between original antibody carrying R103 (red) or
optimized antibody carrying M103 (red) with related residues R346 (blue) and R452/L452 (blue) on Delta/WT RBD. (D) Predicted structure of interactions
between original antibody carrying L104 (red) or optimized antibody carrying F104 (red) with R452/L452 (blue) on Delta/WT RBD.
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potential immune escape capabilities such as in Hie et al. (22),
even before they emerge. Altogether, we believe that further
development of these methods will allow us to predict and keep
pace with viral evolution.

Methods
Building In Silico Mutation Libraries and Predicted Structures. Variant-specific
amino acid substitutions in the RBD were first created to build complexes with
different antigen variants. For each antigen variant, single-point mutations in
CDR of the antibody were enumerated. The structures of mutated complexes
were sampled using the Rosetta relax and CartesianΔΔG programs (43). Point
mutations with better predicted binding affinity and experimental neutraliza-
tion were combined to double and triple mutations, which go through the
next round of selection.

Extraction of Interresidue Interaction Features by Geometric Neural Networks.
Each residue in the complex structure was encoded into a vector representa-
tion using a geometric attention network (34) designed to capture interresi-
due interactions. A residue was represented by its Cα coordinate denoted as
ti and an orientationmatrix Ri defined as

vi1 ¼ pðNÞ
i � ti, vi2 ¼ pðCÞ

i � ti,
ui1,ui2 ¼ ðvi1,vi2Þ,

Ri ¼ ui1

‖ui1‖
ui2

‖ui2‖
ui1

‖ui1‖
×

ui2

‖ui2‖

� �
,

where pðNÞ
i is the position of N, pðCÞ

i is the position of C, and “GramSchmidt”
denotes the Gram–Schmidt process for orthogonalization, where, here, ui1, ui2
are the orthogonal vectors. Each residue was also assigned an initial feature
hð0Þ
i encoding its amino acid type and the local geometry of its atoms,

hð0Þ
i ¼MLPamino acidðiÞ

�
RT
i

�
pðaÞ
i � ti

�
j a ∈ fN,Cα,C,O,Cβ,…g

�
,

where each amino acid type was encoded by a separate multilayer perceptron
(MLP) with local coordinates of atoms as input. Each residue pair was repre-
sented as a vector zij indicating the relative position of the two residues. The
feature vector of a residue was updated iteratively by the multihead attention
network (the computational components, or heads, of the transformer net-
work that are repeated multiple times in parallel). The attention weight was
formulated by considering residue features, pairwise features, and distances,

βhij ¼
1
d
Linear

�
hðlÞ
i

�
� Linear

�
hðlÞ
j

�
,

γhij ¼ LinearðzijÞ,
δhij ¼wh‖p

ðCβÞ
i �pðCβÞ

j ‖,
αhij ¼ Softmaxjðβhij þ γhij þ δhijÞ,

where h denotes the number of the attention head, d is the dimension of hðlÞ
i ,

and wh is a learnable factor. The message passed from residue j to residue
iwas formulated as

uh
i ¼∑

j
αhij Linearðhl

iÞ,

vh
i ¼∑

j
αhij LinearðzlijÞ,

wh
i ¼∑

j
αhijR

T
i

�
pðCβÞ
i �pðCβÞ

j

�
,

mh
i ¼ Concatðuh

i ,v
h
i ,w

h
i Þ:

Finally, message vectors mh
i from different heads were concatenated to

update residue features with a residual connection and a layer normalization
step (which directly estimates the normalization statistics from the summed
inputs to the neurons within a hidden layer so the normalization does not
introduce any new dependencies between training cases). By exchanging
information among residues, the final feature vector of each residue hðLÞ

i enc-
odes its interaction with surrounding residues and will subsequently be used
to predict the change in binding affinity.

Prediction of the Change in Binding Affinity upon Mutation. Residues in the
WT complex and the mutant complex were encoded using the aforemen-
tioned geometric neural network. As a complement to the features output by
the network, physical energy values of a complex calculated by Rosetta were
also included as a feature shared across residues in the complex. Let hwt

i
denote the feature of the i th residue in the WT complex, and let hmut

i denote
the feature of its counterpart in the mutant complex. These features were
used as input to the following antisymmetric network so as to predict the
difference in binding affinity between the two complexes:

xi ¼MLP1ðhwt
i ,hmut

i Þ �MLP1ðhmut
i ,hwt

i Þ,
D¼W∑

i
xi,

where,MLP1 is a standardMLP network, andW is a trainable weight matrix.

Model Training. The training and validation datasets were constructed from
the SKEMPI V2.0 dataset (38), the largest antibody–antigen binding affinity
dataset, which contains 342 complexes and 5,318 mutations in total. Mutant
structures were sampled by the Rosetta Cartesian ΔΔG program. The dataset
was split evenly into five subsets without overlapping complexes. Accordingly,
five models were trained, using each subset for validation. For each chain in a
complex, we chose only the 48 residues spatially closest to the other chain to
train the model, because it was sufficient to consider only residues on or close
to the interface. The loss function we used for training was the mean-squared
error (MSE) between the predicted ΔΔG values and the experimentally mea-
sured values. The model was trained for 100,000 iterations using the Adam
optimizer at a learning rate of 1e-4 until convergence. Validation was per-
formed every thousand training steps to monitor the optimization procedure.
The learning rate was reduced by half if the lowest validation loss did not
drop for 10 validation iterations.

Evaluating Model Performance. The model was evaluated by split-by-complex
fivefold cross-validation over the entire SKEMPI V2.0 dataset. A subset consist-
ing of 1,131 single-point mutations (S1131) (39) was used to benchmark the
model and other baselines (50, 51). An ensemblemodel that averages the pre-
diction of ourmodel, GeoPPI, and Rosetta was also evaluated. Pearson correla-
tion between the predicted ΔΔG values by different methods and real ΔΔG is
reported in SI Appendix, Table S1. Figure plots of ΔΔG predicted by the model
and experimental ΔΔG are reported in Fig. 1B. An additional subset consisting
of multipoint mutations (M1707) (40) was also used as a benchmark; Pearson
correlation on this subset is reported in SI Appendix, Table S1. Overall, our
model's predictions were highly correlatedwith experimental results.

Ranking Mutations by Model Ensemble. Mutants in CDRs were scored using
the average predicted ΔΔG from an ensemble of five trained models, as the
models were trained in a fivefold cross-validation manner. Mutations were
grouped by antigen variants and sorted in ascending order; those with lower
ΔΔG values were more favorable. We also used GeoPPI as another ΔΔG pre-
dictor for ranking mutations in PPI complexes based on a pretrained graph
neural network and a random forest regressor (41). The ΔΔG values reported
by the Rosetta Cartesian ΔΔG program were also employed to rank muta-
tions. The average of three rankings serves as the criteria for selecting candi-
datemutations.

The initial single-point mutation library was built as follows: 1) All single-
point mutations in HCDRs were enumerated and scored; 2) all double-point
mutations from the top single-point mutations were enumerated; and 3) all
single and double mutations were ranked, and the top mutations on three
CDR-H loops were selected as the initial mutations, including T30P, T31W,
Y32O, N52D, N53F, N55L, N57L, G100P, R103M, L104F, and Q105F.

Cell Lines. HEK293T cells (ATCC), HeLa cells expressing hACE2 orthologs
(kindly provided by Qiang Ding, Center for Infectious Disease Research, School
of Medicine, Tsinghua University, Beijing, China) were maintained at 37 °C in
5% CO2 in Dulbecco’s minimal essential medium containing 10% (vol/vol)
heat-inactivated fetal bovine serum and 100 U/mL of penicillin–streptomycin.
FreeStyle 293F cells (Thermo Fisher Scientific, R79007) were maintained at
37 °C in 5% CO2.

Antibody and Fab Production. Antibodies and Fab production were con-
ducted as previously described (33, 52). Reference REGN10987 were synthe-
sized according to the sequences released in the Protein Data Bank (44,
53–56). Antibodies were produced by transient transfection of HEK 293F cells
(Life Technologies) using plasmids expressing the heavy and light chain by
1 mg/mL polyetherimide (Sigma). After 5 d, the supernatant was collected and
purified with protein A. Antibodies were eluted from protein A with elution
buffer (0.3 M glycine, pH 2.0), followed by dialyzing into phosphate-buffered
saline (PBS).

Production of Pseudotyped SARS-CoV-2. The WT pseudotyped virus used
throughout the analysis was the prototype strain (GenBank: MN908947.3)
with a D614Gmutation (WT D614G). Variants were extracted from the Global
Initiative on Sharing All Influenza Data (GISAID) website. The Alpha variant
(GISAID: EPI_ISL_601443) was constructed with a total of nine mutations (69-
70del, 144del, N501Y, A570D, D614G, P681H, T716I, S982A, and D1118H). The
Beta variant (GISAID: EPI_ISL_700450) was constructed with 10 mutations:
L18F, D80A, D215G, 242-244del, S305T, K417N, E484K, N501Y, D614G, and
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A701V. The Gamma variant (GISAID: EPI_ISL_792681) was constructed with 12
mutations: L18F, T20N, P26S, D138Y, R190S, K417T, E484K, N501Y, D614G, H655Y,
T1027I, and V1176F. The Delta variant (GISAID: EPI_ISL_1534938) was constructed
with 10 mutations: T19R, G142D, 156-157del, R158G, A222V, L452R, T478K,
D614G, P681R, and D950N. The variant Delta Plus (GISAID: EPI_ISL_3019629) was
constructed with 11 mutations: 19R, G142D, 156-157del, R158G, A222V, K417N,
L452R, T478K, D614G, P681R, and D950N. The Kappa variant (GISAID:
EPI_ISL_1384866)was constructedwith eightmutations: T95I, G142D, E154L, L452R,
E484Q, D614G, P681R, and N1071H. The Eta variant (GISAID: EPI_ISL_2885901) was
constructed with eight mutations: Q52R, A67V, 69-70del, 144del, E484K, D614G,
Q677H, and F888L. The Epsilon variant (GISAID: EPI_ISL_2922315) was constructed
with four mutations: S13I, W152C, L452R, and D614G. The single mutation N439K
was introduced into the pcDNA3.1 vector encoding WT D614G using QuikChange
site-directed mutagenesis (Agilent 210519). The gene of variants were synthesized
in Genewiz, Inc. WT, and mutated SARS-CoV-2 pseudotyped viruses were gener-
ated by cotransfection of human immunodeficiency virus backbones expressing
firefly luciferase (pNL43R-E-luciferase) andpcDNA3.1 (Invitrogen) expression vectors
encoding the respective spike proteins into 293T cells (ATCC) (20). Viral superna-
tants were collected 48 h later. Viral titers were measured as the luciferase activity
in relative light units (Bright-Glo Luciferase Assay Vector System; Promega
Biosciences).

Neutralization Activity of Monoclonal Antibodies against Pseudotyped SARS-
CoV-2. Neutralization assays were conducted as previously described (33).
Serial dilutions of monoclonal antibodies (mAbs) were prepared with the
highest concentration of 5 or 50 μg/mL. WT or mutated spike pseudotyped
viruses were incubated with mAbs at 37 °C for 1 h. HeLa-hACE2 cells (1.5 × 104

per well) were then added into the mixture and incubated at 37 °C for 48 h to

60 h. Then the luciferase activity was measured after cell lysis. The percent of
neutralization was determined by comparing with the virus control.

Antibody Binding Kinetics Measured by SPR. The binding kinetics of mAbs to
SARS-CoV-2 WT or Delta RBD monomer were analyzed using SPR (Biacore 8K;
GE Healthcare). Specifically, recombinant protein A (Sino Biological) was
immobilized to a CM5 sensor chip. The mAbs (2 μg/mL) were captured by
recombinant protein A, and then serial dilutions of SARS-CoV-2 WT/Delta RBD
with highest concentration of 200 nM were run at a flow rate of 30 μL/min in
PBST buffer (1×PBS and 0.05% [vol/vol] Tween-20). The resulting data were
fitted to a 1:1 binding model using the Biacore 8K Evaluation software
(GE Healthcare).

Quantification and Statistical Analysis. The technical and independent experi-
ment replicates are indicated in thefigure legends. IC50 ofmAbswere calculated
by the four-parameter dose inhibition equation in using Graphpad Prism 9.0.

Data Availability. All study data are included in the article and/or SI Appendix.
The code can be found in GitHub at https://github.com/HeliXonProtein/
binding-ddg-predictor.
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